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A model, in which a heavy fermion B is added to the Lee model and weakly coupled to V and 0 is con­
sidered. Decay amplitudes for B —» V+B and B —> iV+0+0 are evaluated by dispersion theoretic methods. 
The absorptive part of these amplitudes incorporate contributions from one- and two-boson intermediate 
states. Attention is focused on the question of how well founded is the usual approximate treatment of 
absorptive amplitudes, which neglects the higher mass states (here the two-boson states) with respect to 
the lowest mass (here the one-boson) states. It is shown that in a dispersion scheme which involves sufficient 
subtraction to give completely finite results, and which involves as many arbitrary constants as the theory 
allows, the one-particle contributions to the absorptive parts of the B —> iV+0+0' amplitude diverge 
logarithmically and that these logarithmic divergences are cancelled by the two-particle contributions to 
this amplitude. 

I. INTRODUCTION 

IN a recent paper, one of us1 discussed the decay of a 
heavy fermion, called a B particle, which had been 

added to the Lee model and which was weakly coupled 
to V and 6 by the Hamiltonian 

(70p(out) HW\B). Contraction on 0P gives 

u(k) 

k (2c0;fc) 1/2 
(l) 

The calculation was carried out in a dressed particle 
picture and the amplitudes for B —> V+6 and B—^N 
+0+0 decay were represented as spectral sums in­
volving contributions from the one-particle (V—6) and 
the two-particle (N—6—6) states. Although, as ex­
pected, the perturbative series (in gp, the renormalized 
strong coupling constant) consisted of convergent inte­
grals only, the one- and the two-particle parts separately 
contributed divergent terms which, however, combined 
to give finite and correct results. 

This situation, in the event that it also arises in the 
dispersion theoretic treatment of this problem has obvi­
ous and serious implications for the approximate treat­
ment of the absorptive part of amplitudes in which the 
"lowest mass" contributions are retained, whereas the 
"higher mass" terms are dropped on the assumption 
that they will be dominated by the former. The present 
calculation was undertaken to inquire whether such 
cancellations do indeed occur in a dispersion theoretic 
evaluation of the amplitudes for B decay. 

II. B 

To lowest order in the 
Dv(co), the amplitude for B~ 

F-j-0 DECAY 

weak coupling constant 
> V+d decay, is given by 

* Supported by the National Science Foundation. 
1 K. Haller, J. Math, Phys. 4, 323 (1963). 

/

+c© 

dtd(f)(V\AvHw\B). (2) 
-oo 

It is convenient to write 

Dv(wP) = u(p) {2wp)-^F{o>v), 
where 

F(«) = Ga(F | *t | <))+*((.>), (3a) 

<£(w) = W dteiOe^'iVlJi^H^B), (3b) 
J —oo 

and j(t) is specified by 

Ak(t) = iei"*tu(k)(2a>k)-
1'2j(t) 

and by 
W ( 0 ) | F > = g p . 

The absorptive part of <£(a>) is given by 

Mu) = *ZiKEi-™-o>)(V\j(0)\l)(l\H«>\B), W 

where YLi indicates summation over a complete set of 
states. Since the calculation is to first order in the weak-
coupling constant, the complete spectrum for the strong-
coupling problem is the proper one to use. Due to the 
selection rules that are operative in the Lee model, only 
the sector containing the V6 and the N66 states (we 
here use the outgoing states) contributes to the 
sum. 0(co) can be written as the dispersion integral2 

2 J. D. Jackson, in Dispersion Relations, edited by G. R. Screaton 
(Interscience Publishers, Inc., New York, 1960). See also M. L, 
Goldberger, in Dispersion Relations and Elementary Particles, 
edited by C. DeWitt and R. Omnes (John Wiley & Sons, Inc., 
New York, 1960). 
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<j>(co) = (7r)_iy<j>a(a/)[V—co —•irf]~ldu ; <f>(a?) becomes 

(V\j(0)\Vej™»)Dv(<ak) 

k 

III. B-^AT+e+0 DECAY 

The decay amplitude Dn(ooq,a)p), to lowest order in Gp 

is given by 

ook—o)P—trj 

(V\j(0)\NdkOk>^)Dn(a>k,G>k,) 
+ £ : (4) 

k » k ' ook+o)k'—-o)p—iri 

Dn(<oq,<*P) = <iWq0p<
ottt) | ff„ 15). (7) 

After contraction on 0P this becomes 

/ <i ,^(0<^q
( o u t ) |4pff r o |S) 

•^ —oo 

+ (^q«>ut) > p # w | £ > . (7a) 

where Dn(cck,a)k>) is the amplitude for B —> N+Ok+dkr p / o> ) = (2)~1/2| 
decay. 

To represent the amplitude A,(co) in terms of a 
renormalized weak-coupling constant it is necessary to 
make a subtraction; this is because the renormalization 
of the weak-coupling constant by the strong interaction 
involves the renormalization of decay vertex graphs We will refer to the two terms on the right-hand side 
which never arise in the Lee model itself, so that the (r.h.s.) of Eq. (7a) as a(cog; oop) and /3(ojq; oop), respec-
ratio of the renormalized to the unrenormalized weak- tively. a(o)q;o)p) can be written as —u(p)[2\/o)p]~1 

coupling constant, (Gp/G0) cannot be expressed in terms Xx(^<?; &P) and x (<*>«; uv) then becomes 
of the renormalization constants of the Lee model alone. 
We write 

F(a>p)-F(0) 

(V\X0)\V6k™)Dv(uk) 

XWq 
/

+00 

-oo 

dteWe^'imj0^ \j{t)Hw\B). (8) 

=«*E-

+ W P 2 

o>yt(cofc—cop—irj) 

{V\j(0)\Ndkdk>^)Dn(ook,o>k>) 

k,k> (a)k+a)k>)(ook+a)k> — o:p — iri) 
(5) 

and set F(0) = Gp. The matrix elements appearing in 
Eq. (5) are easily expressed in terms of Tv(co) and R(ca), 
the transition matrix elements for the elastic process a(ooq] cop) = 
F+0W —» V+du and for the inelastic process V+da, —> 
N+9i+d2, respectively, both evaluated on the energy 
shell. We finally write the integral equation 

The absorptive part, Xa(o:q; o)p) is written 

X(NAq^\j(Q)\l)(l\Hw\B), 

where the summation again extends over the V—0, N60 
sector of the Lee model. The dispersion relation leads to 

u{p) f (R(q;k)A,(cofc) 

(2a>fc)
1/2 Tv*(uk)Dv(ak) 

F(<ap) = Gp—coPY,—— ; — 
k u{k) 0)k{o>k — 0)p — 1''n) 

2(cOp)1/2l k o)k—a)q—a)p—ir] 

S(q;k,k')Z)n («*,«*') 

+ E 7\> (9) 
k > k ' 0)k + a)k> — 00q — 0)p —17} 

-OJP Z 
k,k 

[_2(cok+a)k>)J 1/2 

x-

u(k,V) 

R*(<ak+Uk')Dn(a)k,Uk') 

(o)k+o)k')(^k+ook' — o)p~ir]) 

where (R(q;k) and S(q;k,k') denote ( M V o u t ) | i ( 0 ) | 
X70k<out>) and {Ne^ont)\j(Q)\N6kek^

0^)J respectively. 
Integral equations for (R(q;k) and S(q;k,k') can be 
written by systematically commuting the outgoing 
boson annihilation operators from the left of j(0) to its 
right, and writing dispersion relations for the resulting 

(6) commutators which later disappear at /=0 . 3 These 
integral equations are 

u(q) ( (2a;,)1/2 

(R(q; k) = g p 5 q , k + — — gp—^-Tv*(wk) 
(2wJ 1/2 u(k) LCOo COk — Cx)Q— 1' 

+E 

k—coq—iri 

(2c,)1/2 

U(K) 
T.n*(coK)(R(K;k) 

-cofc—o)K—ooq— it] oiK—ooq—ir]J 
(10) 

3 The quantity R(q; k) is almost identical to F(«,&>') in R. Amado, Phys. Rev. 122, 696 (1961); /?(«,«') differs in being defined for 
"in" instead of "out" states, and by trivial multiplicative constants. 
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and 
T (2co*)1/2 (2co,01/2 1 

S ( q ; k , k 0 = - ( 2 ) - 1 / 2 | 5q>k r _ r n * ( « * ) + « q i k ; r»*(«*0 
V) J L u(k) u(kf) 

u(q) f [2(co,+co,0]1/2 

(R*(wA+« 
Leo, (2c0g)1 / 2 l U(k,k') LWg W/i + COj;'—COg—WjJ 

(2co,)1/2 f 1 1 -II 
+ L —• r.*(co.)S(ic; k,k') r - — r . (10a) 

* U(K) LCOfc+COj;' — 0)K — 0)q— If] COK —0) q—if] J ) 

P(coq;cop) is evaluated by contracting on 0q. This leads The absorptive part, ^«(cog; cop), is given by 

p(o>q;o>p)=(2)~^t(N\aqapHw\B) X(N\j(0)\l)(l\apHw\B), (12a) 

+{N\Aqa,Hw\Bn (11) w h e r e t h e s u m m a t i o n i n t h i s c a s e e x t e n d s ^ 

The first term on the r.h.s. of Eq. (11) vanishes, since N—6 sector. I t might seem, superficially, that the re-
Hw is linear in boson operators and since ak | B) = 0.4 The placement of avHw by the commutator [ap,27w] in the 
elimination of this term is essential. Dispersion schemes matrix element (I \ avHw \ B) would effect a substantial 
which circumvent this step and culminate in equations simplification, especially since in this calculation the 
which still contain (N\aqapHw\B) implicitly lead to dressed and bare B operators can be used inter-
trivial, useless identities instead of soluble integral changeably. However such a move must be avoided 
equations. since it would introduce the bare weak coupling con-

I t is convenient to write j3(coq; oip) = u{q)[_2\/ooq~]~1 stant into the calculation, thereby obstructing further 
X^(o)q;o)p) in which case ^(cofl; oop) becomes progress. Instead, (l\avHw\B) is written as the sum 

r + V Y.v{l\av\VW\Ew\B). 

/

-fOO 

<ft0(OeMA7 l i(OIWkpff»|£>- (12) 
-oo 

The resulting expression for |8(w9; wp) is 

-u{q) | rg, (2a,,)1'2 Tn*M(m^» I a, | W ^ ) - ] 

2\/ooq{ kLo)q K U(K) ooK—o)q—ir] J 

r g P (2W K)1 '2 Tn* M ( W o u t ) I ffP I Ne*9^™»)-\ i 
+ E - < F | a P | 7 W k M o u t ) > + E — ; p„(«*,w*') • (13) 

In Eq. (13) matrix elements of ap, taken between various outgoing states, arise and must be evaluated. Let us, for 
example, consider (V\av\ F0k

(out)). We know that 

<70p<™*>|70k<™*^ (14) 
where 

/

• + « 

dtB{t)ei(°»t{V\j{t)\Vd^). 
- 0 0 

Writing a dispersion integral for £(&>*; co?) leads to 
«(/>) (2C0,)1'2 r ,*(»*) 

< F | a p | W ° u « ) = 5p ,k+ • r . (15) 
(2co3>)1/2 u(k) a)k—ojp—iri 

Similarly, we can show that 
<P) [2(co*+a^)]1 / 2 CR* («*+«*') 

<7| ap | tfMk<(out)> = r> ( 1 5 a ) 
(2cop)

1/2 u(kyk') Uk+aifc' — Up—iri 
-u(p) (R(K;k) 

(AW™*) | ap | F0k
(out)> = r , (15b) 

(2wp)
1/2 Wfc—coK—Wj,-ir? 

and 
«(£) S(*;k,k ') 

<AW0Ut) | a, | NBtfvi™»)= (2)-1/2[5,,k5p,k,+5«,k^P(k] r . (15c) 
(2cOp)1/2 COfc+COA;' —C0K —C0p — ^ 

4 The "exact" states are not stationary with respect to the weak interaction, |J3), therefore, contains no virtual 0 particles, 
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IV. ITERATION OF DECAY AMPLITUDES 

The preceding sections have led to an inhomogeneous system of two coupled linear singular integral equations 
for the decay amplitudes Dv(cok) and Z>n(co?c,a>&')- The kernels for these equations are either explicitly known, or else 
are functions for which other soluble integral equations have been derived. The integral equations for the decay 
amplitudes, as well as for the auxiliary variables, all have at least an iterative solution which can be explitly 
generated. In some cases an exact solution can explicitly be given, either in terms of scattering amplitudes alone, 
or in terms of scattering amplitudes together with other decay amplitudes. For the question of primary import, 
however, it suffices to generate an iterative solution for Dv(o)k) and Z}n(wfc,co&') to the first few orders of gp. Before 
proceeding with the iteration we note that due to the asymmetric treatment accorded to the ^4q

(out) and ^4p
(out) 

operator in Dn(uq; cop), the expression for the latter amplitude lacks manifest symmetry in a>q and a>p; we, therefore, 
symmetrize it in o)q and 00 p. 

The lowest (zeroth) order of Dv(oip) is the inhomogeneity in Eq. (6) and is given by Dv
w(a>p) = u(p)(2o)p)~

1/2Gp. 
Iterating this equation to the next order gives 

Z>.<«(„,) = G P — g p » ( - ) / — - . (16) 
(47T2) \ 2 / J COfc3(cOA; — 0)p — IT}) 

Further iteration of Eq. (6) requires the amplitude Dn(a)k,<*)k') to first order in gp £Dv(co) is an even function of gp, 
Z>»(co,o/) an odd one], which is obtained by iterating Eq. (7a); [cf. also Eqs. (9) and (13)]. The quantities which 
play the roles of inhomogeneous part in this iteration are integrals involving ZV0) (<*>)• There are two terms which 
contribute to Dn(cok,ook>); one originates from Eq. (9) and is contributed by the part of (ft which is linear in gp and 
is the inhomogeneous part of Eq. (10). The other is obtained from Eq. (13) and has its origins in the 5-function part 
of ( F | a p | F0k(out)). The combined contribution of these two terms gives Dn

{l){o)q^p) = Gpgpu{q)u(p)[_2o)qo3p~]~^12 

X (coq+cop). We now use this value of Z)n
(1) (ooq)ooP) together with the previously computed value of ZV2) (a?) to obtain 

ZV4)(cop) = GP gA — ) / T T-. (17) 
(47r2)2 \ 2 / J ^k2(^K2(^k+o)K—oip—irj)(^k—o)p—ir))(cx)K—(jop—ir]) 

The next step in the iteration, is the evaluation of Dn
(3)(«q,a)p); Eq. (7a) gives many contributions to this order; 

we will separate Z)n
(3)(o>,o/) into two parts [£>n

(3)(co,co')]a and [Z>n
(3)(o>,a/)D& in the following fashion: All contribu­

tions to Z>n
(3) which originate from integrals involving the amplitudes ZV0) or ZV2) will be grouped into [Dn

{z)~]a. 
The contributions that have their origin in integrals involving J9»(co,co') itself to first order in gp will be grouped into 
£Dn

(3)(co,a/)]&. We note that the former group is obtained from the one-meson {V—6) part of the absorptive 
amplitude while the latter is due to the two-meson (N—d—6) part. Our earlier stated objective will, therefore, be to 
examine whether f7}»(3)(a>,a/)]a and [£>n(3)(w>w')]& are separately finite. 

We note that iteration gives 

-Gpgp
%u(q)u(p) r f / l 1 \ 1 

[Z>n ( 8 ) (« f l , a>p)]a = ^ — ^ / Pdku*(k)\(—+—) ; 
47T2(8c0gCOp)

1/2 J [\0)q C0p/ 0)k2(o)k — WQ — 0 ) P — i 

<-J-r^-L^) L 

\o)k—o)q—iy] o)k—Up—ifl/o)k2(uk—wq-

+(-) 1—+(^) L _ | , 

-irj) 

-iy{) 

GPgp*u(q)u(p) /• f 1 1 
[ZV3>(cog)cop)]fc= / k*dkuKk)\ + — 

47T2(8coQcop)
1/2 J [ookd(uk—uP—i'n) wh

z(uk—uq—iri) 

1 1 

00pQ)k2(o>k — Wq~i7l) OOqOO^iuk — Wp — iri) J 

I t is apparent that both of these terms contain logarithmic divergences, in the sense that, as the cutoff implicitly 
contained in the function u{k) recedes to infinity (in the limit of u(k)=\)} the integrals become logarithmically 
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infinite. Dn^
z)(o)q,oop), the sum of the two, however, is given by 

— Gpgp
zu(q)ti(p)(o)q-{-o)p) r k2dku2(k)[o)k(o)q+cx)p)— (wg

2+cop
2)] 

Dn™(uq,<ap) = / ; : — 
47r2(8cog

3cop
3)1/2 J o)k

2(o)k—cop—ir})(o>k—wq— iif])(o)k—wq—o)p—it]) 

and remains finite even in the limit u(k) = l.Dn
(3) (coe,cop) 

moreover agrees with the same value for this quantity 
as computed in the dressed particle picture1 as well as by 
ordinary renormalized perturbation methods. 

V. CONCLUSIONS 

We can conclude from the preceding calculation that 
cancellations of divergent integrals between one and 
two-meson parts of decay amplitudes do occur. Although 
such cancellations do not take place in the evaluation of 
the (subtracted) equation for Dv(o)) [Eq. (6)], they enter 
already in the third-order iteration of the unsubtracted 
equation for Dn(a>,<*)'). I t is, of course, important to know 
whether this cancellation is a general feature of this 
method or whether it is specific to this model, particu­
larly because the equation for D»(co,co') has no actual 
inhomogeneous parts, but is "driven" as it were by the 
Dv(u>) amplitude.5 However, this feature of the calcula­
tion seems to be more specifically due to the linearity of 
the weak-decay Hamiltonian in the boson operator than 
to the limited number of intermediate states in the Lee 
model; it, therefore, seems likely to us that this calcula­
tion reflects something deeper than merely an aspect of 
the Lee model itself. I t is, of course, necessary to under­
take further investigations before such a conclusion can 
be drawn with any confidence; however, it would seem 

5 The authors are indebted to Professor S. B. Treiman for this 
remark. 

proper even on the basis of this evidence to regard this 
type of approximate treatment of absorptive decay 
amplitudes with caution. 

VII. APPENDIX 

In the Appendix we address ourselves to a question, 
raised in Sec. I l l in connection with the derivation of 
Eq. (12) from Eq. (11); namely, why in writing a dis­
persion relation for P(ooq; cop) we choose to contract on 
both boson operators instead of writing, much more 
simply, 

P(a>q; cop) = 2 - 1 / 2 [£ k (NB^ | ap | V6k^)Dv(a>k) 

+ £ k , k ' (N6f*> | ap | iVMk> u t ) >£n("* ,^ ' ) ] . (Al) 

This is of some interest, since Eq. (Al) besides being 
much simpler than Eq. (12) is entirely independent of 
any dynamical assumptions, whereas Eq. (12) follows in 
part from the linearity of Hw in the boson operator, and 
to that extent depends on the specific form of the 
Hamiltonian Hw. 

As noted in the body of the paper, Eq. (Al) leads to a 
trivial and useless identity. Substitution of Eqs. (14)-
(15c) into (Al), and symmetrization in cog and cop leads 
to 

P(o)q,a)p) = Dn(Q)g,a)p)—a(a>g>aip). 

Equation (7), thus, reduces to the trivial identity 
Dn(o)q)o)p) = Dn(o)q,o)p). 


